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Abstract. We determine the probability distribution for the dis-
tance between two random points in a box with sides a, b, and c.
The average of this distance is known before as Robbins’s constant.

1. Introduction

We consider the random variable V = the distance between two
random points in a box with sides a, b, and c. V is one of the many
random quantities studied in Geometric Probability, see eg. [6]. The
classical Sylvester’s problem considers the area of the convex hull of
three random points in a convex set, in particular in a triangle, a
square, or a circle. The three-dimensional variants of these problems
have also been studied. These problems, which consider a random
area in an area or a random volume in a volume are affinely invariant,
meaning that the results are the same for a cube and for a box with
different sides and even for a parallelipiped. This is not the case in our
present problem which considers a one-dimensional length in a three-
dimensional set, explaining why our result depends on the box sides a,
b, and c.

The similar problem of the distance between two random points on
the surface of a cube has been considered by Borwain et.al. [1] and
Philip, [4]. See also Bailey et.al. [2].

The expected value of the distance between two random points in a
box was stated as a problem by D.P. Robbins, [5], and calculated by
T.S. Bolin, [3]. The distribution function K(v) = Prob(V ≤ v) for this
random variable seems not to be known before.

A survey of the results in this area are collected by E. Weisstein on
the web site [7].

Our method is to determine the distance distributions for each ot the
three directions and convolve them to get the distribution of V . The
result is a long expression and we rely heavily on the use of a formula
manipulating program, in our case Maple 10.
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Figure 1. The area Fa(t).

2. Notation and formulation.

Let the two random points be (X1, Y1, Z1) and (X2, Y2, Z2). We
assume that X1 and X2 are independent and evenly distributed in the
interval (0, a). The same is assumed for Y1 and Y2 in (0, b) and for Z1

an Z2 in (0, c). We assume also, without loss of generality, that the
box sides satisfy 0 < a ≤ b ≤ c.

We start by calculating the distribution function Fa(t) = Prob((X1−
X2)

2 ≤ t) and from it the corresponding density function fa(t) = dFa(t)
dt

.
Then, the density g(s) corresponding to G(s) = Prob((X1−X2)

2+(Y1−
Y2)

2 ≤ s) is obtained by convolving fa and fb. At last, the density h(u)
corresponding to H(u) = Prob((X1−X2)

2+(Y1−Y2)
2+(Z1−Z2)

2 ≤ u)
is the convolution of fc and g. The wanted distribution function for
the distance is K(v) = H(v2) with the density k(v) = 2 v h(v2).

3. The one-dimensional distribution.

The probability that (X1 − X2)
2 ≤ t is proportional to the area of

the diagonal strip in Fig.1.

(1) Fa(t) =

{

1 − (1 −
√

t/a)2, 0 < t ≤ a2 ;

1 a2 < t.

The density is

(2) fa(t) =
1

a
√

t
−

1

a2
, 0 < t ≤ a2 .

When we give the value of a function like fa(t) in an interval, we
tacitly assume that it is zero where it is not defined.



DISTANCE IN BOX 3

4. The two-dimensional distribution.

The probability density for the event (X1 −X2)
2 + (Y1 − Y2)

2 ≤ s is
the convolution g of fa and fb

g(s) =

∫

fa(s − t) fb(t)dt.

Because of the different domains of definition of fa and fb, there are
three cases

(3) g1(s) =

∫ s

0

fa(s − t) fb(t)dt, 0 < s ≤ a2 .

(4) g2(s) =

∫ s

s−a2

fa(s − t) fb(t)dt, a2 < s ≤ b2 .

(5) g3(s) =

∫ b2

s−a2

fa(s − t) fb(t)dt, b2 < s ≤ a2 + b2 .

.
If a = b, g2 is omitted. We get

(6) g(s) =















































−2
√

s
a2b

− 2
√

s
ab2

+ π
ab

+ s
a2b2

, 0 < s ≤ a2 ;

−2
√

s
a2b

− 1
b2

+ 2
ab

arcsin
(

a
√

s

)

+ 2
a2b

√
s − a2, a2 < s ≤ b2 ;

− 1
b2

+ 2
ab

arcsin
(

a
√

s

)

+ 2
a2b

√
s − a2

− 1
a2 + 2

ab
arcsin

(

b
√

s

)

+ 2
ab2

√
s − b2

− π
ab

− s
a2b2

, b2 < s ≤ a2 + b2.

Since s is the the square of the distance, we get the density for the
distance v =

√
s between two random points in a rectangle with sides a

and b as gv(v) = g(v2) ds
dv

= 2 v g(v2). This density is shown in Figure
2.

The expectation of the distance between two random points in a
rectangle is

(7) Erectangle =

∫ a2+b2

0

√
s g(s) ds =

∫

√

a2+b2

0

v gv(v) dv.

The result is
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Figure 2. The density function gv(v) for the distance
between two random points in a rectangle with sides 3
and 4.

(8) Erectangle =
a2

6 b
ln

(

b

a
+

√

1 +
b2

a2

)

+
b2

6 a
ln

(

a

b
+

√

1 +
a2

b2

)

+
1

15

(

b3

a2
+

a3

b2
+

(

3 −
a2

b2
−

b2

a2

)√
a2 + b2

)

For a = b = 1, this reduces to

(9) Eunit square =
1

3
ln
(

1 +
√

2
)

+
1

15
(2 +

√
2) ≈ .52140543.

5. The three-dimensional distribution.

The density of the probability that (X1 −X2)
2 + (Y1 − Y2)

2 + (Z1 −
Z2)

2 ≤ u is the convolution of fc and g

(10) h(u) =

∫

fc(u − s) g(s) ds.

We shall convolve fc with each of the three components of g given
in (6). Since the components have different domains of definition, this
will also be the case for the convolutions. A closer study of (6) moti-
vates the defining of the following gij.
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g11 = − 2

√
s

a2b
, 0 < s ≤ b2;

(11)

g12 = − 2

√
s

a b2
+

π

a b
+

s

a2b2
, 0 < s ≤ a2;

g22 = −
1

b2
+

2

a b
arcsin

(

a
√

s

)

+
2

a2 b

√
s − a2, a2 < s ≤ a2 + b2;

g32 = −
1

a2
+

2

a b
arcsin

(

b
√

s

)

+
2

a b2

√
s − b2, b2 < s ≤ a2 + b2;

g33 = −
π

a b
−

s

a2b2
, b2 < s ≤ a2 + b2.

Then,

g1 =g11 + g12, 0 < s ≤ a2;(12)

g2 =g11 + g22, a2 < s ≤ b2;

g3 =g22 + g32 + g33, b2 < s ≤ a2 + b2.

With this splitting, we can write g as the sum

(13) g = g11 + g12 + g22 + g32 + g33,

Convolving each of the gij with fc ,

(14) hij(u) =

∫

fc(u − s) gij(s) ds.

we can write

(15) h = h11 + h12 + h22 + h32 + h33,

Notice that g32 is g22 with a and b switched. This applies also to their
boundaries of definition implying that we can get h32 by switching a
and b in h22.

A detailed description of the resulting h(u) is given in the next sec-
tion.

Like g, each hij has different analytical expressions hijk in three
adjacent intervals. Remembering that a ≤ b ≤ c, and looking at e.g.
h11, we have

h11 =











h111, 0 < u ≤ b2;

h112, b2 < u ≤ c2;

h113, c2 < u ≤ b2 + c2.

(16)
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Figure 3. Density function k(v) for the distance be-
tween two random points in a box with sides 4, 5, and
6.

Altogether, there are eight breakpoints on the u-axis for the analyt-
ical description of h(u) and they are

(0, a2, b2, c2, a2 + b2, a2 + c2, b2 + c2, a2 + b2 + c2)

.
If c2 < a2 + b2 the points above are in increasing order. Otherwise,

points 4 and 5 above should change place to show the intervals for the
analytical expressions. This implies that we have two cases if we want
to give h(u) for each interval. Writing h(u) as in (15) circumvents this
difficulty. If a = b or b = c the number of intervals decreases to five
and if they are all alike there are just three intervals left.

6. The density of the square of the distance in a box.

The practical integrations of type (14) are made with Maple 10. The
Maple worksheet habc.mw is available at www.math.kth.se/~johanph.

We give the result here as functions of u , which is the square of
distance between two random points in a box with sides a, b, and c.
The density k(v) for the distance v =

√
u is k(v) = 2 v h(v2) and is

shown in Figure 3.
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h11 =
1

3 a2 b2 c2
·



























































−3 πb c u + 4 b u3/2,

0 < u ≤ b2,

4 b4 + 6 b2c
√

u − b2 − 6 b c u arcsin( b
√

u
),

b2 < u ≤ c2,

4 b4 + 6 b2 c
√

u − b2

+6 b c u(arccos( c
√

u
) − arcsin( b

√

u
))

−2 b (2 u + c2)
√

u − c2.

c2 < u ≤ b2 + c2.

(17)

h12 =
1

6 a2 b2 c2
·































































































12 πa b c
√

u − 6 π a(b + c)u + 8(a + c) u3/2 − 3 u2,

0 < u ≤ a2,

5 a4 − 6 π a3b,

+12 πa b c
√

u + 8 c u3/2

−12 π a b c
√

u − a2 − 8 c (u− a2)3/2

−12 a c u arcsin( a
√

u
),

a2 < u ≤ c2,

5 a4 − 6 π a3b + 6 π abc2 − c4 + 6( π a b + c2) u + 3 u2

−12 π a b c
√

u − a2 − 8 c (u− a2)3/2

−4 a(2 u + c2)
√

u − c2

+12 a c u(arccos( c
√

u
) − arcsin( a

√

u
)),

c2 < u ≤ a2 + c2.

(18)
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h22 =
1

3 a2 b2 c2
·































































































































































































0 ,

0 < u ≤ a2,

3 π a2 b(a + c) − 3 a4 − 6 π a b c
√

u + 3 (a2 + πb c)u

+(6 πabc − 2(b + 3 c)a2 − 4 bu)
√

u − a2

−6 a b u arcsin( a
√

u
),

a2 < u ≤ a2 + b2,

3 a2b(π a − b) − 4 b4

−12 a b c arcsin( b
√

u
√

a2+b2
√

u−a2
)
√

u

−6 a c (a − π b)
√

u − a2

−6 c
(

b2 − a2 + 2ab arcsin( a
√

a2+b2
)
)√

u − a2 − b2

−6 a b (a2 + b2) arcsin( a
√

a2+b2
)

+6 b c (a2 + u) arcsin
(

b
√

u−a2

)

,

a2 + b2 < u ≤ a2 + c2,

3 a2(a2 − b2 − c2) − 4 b4 − 3 a2 u

−12 a b c
(

arcsin( b
√

u
√

a2+b2
√

u−a2
) − arccos( ac

√

u−c2
√

u−a2
)
)√

u

+2 b (a2 + c2 + 2 u)
√

u − a2 − c2

−6 c(b2 − a2 + 2 ab arcsin( a
√

a2+b2
))
√

u − a2 − b2

−6 a b (a2 + b2) arcsin( a
√

a2+b2
)

+6 b c (a2 + u)
(

arcsin( b
√

u−a2
) − arccos( c

√

u−a2
)
)

+6 ab (c2 + u) arcsin( a
√

u−c2
),

a2 + c2 < u ≤ a2 + b2 + c2

(19)
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h32 =
1

3 b2 a2 c2
·































































































































































































0 ,

0 < u ≤ b2,

3 π a b2 (b + c) − 3 b4 − 6 π a b c
√

u + 3 (b2 + πa c)u

+(6 π a b c − 2(a + 3 c)b2 − 4 a u)
√

u − b2

−6 a b u arcsin( b
√

u
),

b2 < u ≤ a2 + b2,

3 a b2(π b − a) − 4 a4

−12 a b c arcsin( a
√

u
√

a2+b2
√

u−b2
)
√

u

−6 bc (b − π a)
√

u − b2

−6 c
(

a2 − b2 + 2 a b arcsin( b
√

a2+b2
)
)√

u − a2 − b2

−6 a b (a2 + b2) arcsin( b
√

a2+b2
)

+6 a c (b2 + u) arcsin
(

a
√

u−b2

)

,

a2 + b2 < u ≤ b2 + c2,

3 b2 (b2 − a2 − c2) − 4 a4 − 3 b2 u

−12 a b c
(

arcsin( a
√

u
√

a2+b2
√

u−b2
) − arccos( bc

√

u−c2
√

u−b2
)
)√

u

+2 a (b2 + c2 + 2 u)
√

u − b2 − c2

−6 c (a2 − b2 + 2 a b arcsin( b
√

a2+b2
))
√

u − a2 − b2

−6 a b (a2 + b2) arcsin( b
√

a2+b2
)

+6 a c (b2 + u)
(

arcsin( a
√

u−b2
) − arccos( c

√

u−b2
)
)

+6 a b (c2 + u) arcsin( b
√

u−c2
),

b2 + c2 < u ≤ a2 + b2 + c2

(20)
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h33 =
1

6 a2 b2 c2
·































































































0 , 0 < u ≤ b2 ,

3 (2 π a b + b2 + u)(u − b2)

−4c (b2 + 3 π ab + 2 u)
√

u − b2,

b2 < u ≤ a2 + b2,

3 (a2 + b2)2 − 3 b4 + 6 π a3b

−4 c (b2 + 3π a b + 2 u)
√

u − b2

+4 c (a2 + b2 + 3 π ab + 2 u)
√

u − a2 − b2,

a2 + b2 < u ≤ b2 + c2,

3 (a2 + b2)2 + c4 + 6 π a b (a2 + b2 − c2)

−6 (π a b + c2) u − 3 u2

+4 c (a2 + b2 + 3 π ab + 2 u)
√

u − a2 − b2,

b2 + c2 < u ≤ a2 + b2 + c2

(21)

Putting a = b = c = 1 in h, we get the density for the unit cube which
is a reasonably long expression. We give the density kcube(v) = 2 v h(v2)
for the distance V between two random points in a unit cube.

kcube(v) =



































































v2 (4 π − 6 π v + 8 v2 − v3)

0 < v ≤ 1,

(6 π − 1) v − 8 π v2 + 6 v3 + 2 v5 + 24 v3 arctan
√

v2 − 1

−8 v (1 + 2 v2)
√

v2 − 1

1 < v ≤
√

2,

(6 π − 5) v − 8 π v2 + 6 (π − 1) v3 − v5

+8 v (1 + v2)
√

v2 − 2

−24 v (1 + v2) arctan
√

v2 − 2 + 24 v2 arctan (v
√

v2 − 2)√
2 < v ≤

√
3.

(22)

7. The average distance between two random points in a

box.

This average distance E(V ) was given by T.S. Bolis [3] and we
present his result in the next section. Here, we shall describe how
we have calculated the same average. Of course, the results coincide.
Since v =

√
u , we have
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(23) E(V ) =

∫ √
uh(u) du =

∫ √
u

∫

fc(u − s) g(s) ds du.

We start by calculating

(24) m(s) =

∫ √
u fc(u − s) du,

and get

(25) m(s) =
s

c
log

(

c
√

s
+

√

1 +
c2

s

)

+
2

3

s3/2

c2
+

1

3 c2
(c2 −2 s)

√
s + c2.

This function is well defined and increasing from c
3

on the interval
0 ≤ s < ∞.

Then, we get E(V ) as the sum of five intgrals of the form

(26) Eij =

∫

m(s) gij(s) ds.

Moreover, E32 is E22 with a and b switched.
The second moment of the distance is easily calculated as

(27)

α2 =

∫ a2

0

t fa(t) dt +

∫ b2

0

t fb(t) dt +

∫ c2

0

t fc(t) dt =
1

6

(

a2 + b2 + c2
)

.

Our calculations are described in the Maple worksheet Eabc.mw,
which is available at www.math.kth.se/~johanph.

8. Robbins’s constant

Robbins stated this problem in [5]. Bolis, [3] presented a solution
obtained by splitting the box into three similar cones and integrating
over a cone in spherical coordinates.

Notice that the box in [3] has the sides 2a, 2b, and 2c. The result
given below is that in [3] divided by two.

Define:

r =
√

a2 + b2 + c2

r1 =
√

b2 + c2

r2 =
√

c2 + a2

r3 =
√

a2 + b2.

(28)
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Then, the average can be written in the following symmetric and
condensed form

E(V ) =
1

15
r −

7

90 a2
(r − r1) r1

2 −
7

90 b2
(r − r2)r2

2 −
7

90 c2
(r − r3)r3

2

+
4

315 a2 b2 c2

(

a7 + b7 + c7 − r1
7 − r2

7 − r3
7 + r7

)

+
1

30 a b2 c2

(

b6arsinh
(a

b

)

+ c6arsinh
(a

c

)

− r1
2
(

r1
4 − 8 b2c2

)

arsinh

(

a

r1

))

+
1

30 a2 b c2

(

c6arsinh

(

b

c

)

+ a6arsinh

(

b

a

)

− r2
2
(

r2
4 − 8 c2a2

)

arsinh

(

b

r2

))

+
1

30 a2 b2 c

(

a6arsinh
( c

a

)

+ b6arsinh
(c

b

)

− r3
2
(

r3
4 − 8 a2b2

)

arsinh

(

c

r3

))

−
2

15 a b c

(

a4 arcsin

(

bc

r2 r3

)

+ b4 arcsin

(

ca

r3 r1

)

+ c4 arcsin

(

ab

r1 r2

))

.

(29)

The following relation holds for the arsinh function

(30) arsinh(y) =
1

2
log
(

y +
√

1 + y2
)

.

Inserting a = b = c = 1, we get the value for the unit cube

Eunit cube =
1

105

(

4 + 17
√

2 − 6
√

3 + 21 log (1 +
√

2) + 84 log (1 +
√

3)

−42 log (2) − 7 π) ≈ .661707182.

(31)

9. Comment.

Even if Maple is very helpful in doing the calculations of this pa-
per, there are several things it doesn’t do. The success of the calcula-
tions relies on manual simplification of trigonometric expressions and
on manual factorization of polynomials.

We tested our method on the corresponding four-dimensional prob-
lems. When trying to calculate the four-dimensional distribution or
average distance, we encountered integrals that we cannot solve like

∫

arctanx
√

1 − a x2
√

1 − b x2
dx, where a > 0 and b > 0 .
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